Экономичность теплового комфорта в доме обеспечивают расчет гидравлики, её качественный монтаж и правильная эксплуатация. Главные компоненты отопительной
Расчет гидравлики водяной системы отопления
Теплоноситель циркулирует по системе под давлением, которое не является постоянной величиной. Оно снижается из-за наличия сил трения воды о стенки труб, сопротивления на трубной арматуре и фитингах. Домовладелец также вносит свою лепту, корректируя распределение тепла по отдельным помещениям.
Давление растет, если температура нагрева теплоносителя повышается и наоборот – падает при ее снижении.
Чтобы избежать разбалансировки отопительной системы, необходимо создать условия, при которых к каждому радиатору поступает столько теплоносителя, сколько необходимо для поддержания заданной температуры и восполнения неизбежных теплопотерь.
Главной целью гидравлического расчета является приведение в соответствие расчетных расходов по сети с фактическими или эксплуатационными.
На данном этапе проектирования определяются:
- диаметр труб и их пропускная способность;
- местные потери давления по отдельным участкам системы отопления;
- требования гидравлической увязки;
- потери давления по всей системе (общие);
- оптимальный расход теплоносителя.
Для производства гидравлического расчета необходимо проделать некую подготовку:
- Собрать исходные данные и систематизировать их.
- Выбрать методику расчета.
Первым делом проектировщик изучает теплотехнические параметры объекта и выполняет теплотехнический расчет. В итоге у него появляется информация о количестве тепла, необходимом для каждого помещения. После этого выбираются отопительные приборы и источник тепла.

Схематичное изображение отопительной системы в частном доме
На стадии разработки принимается решение о типе отопительной системы и особенностях ее балансировки, подбираются трубы и арматура. По окончании составляется аксонометрическая схема разводки, разрабатываются планы помещений с указанием:
- мощности радиаторов;
- расхода теплоносителя;
- расстановки теплового оборудования и пр.
Все участки системы, узловые точки маркируются, подсчитывается и наносится на чертеж длина колец.
Цели и задачи гидравлического расчёта
С инженерной точки зрения жидкостная система отопления представляется достаточно сложным комплексом, включающим устройства генерации тепла, его транспортировки и выделения в обогреваемых помещениях. Идеальным режимом работы гидравлической системы отопления считается такой, при котором теплоноситель поглощает максимум тепла от источника и передаёт его комнатной атмосфере без потерь в процессе перемещения. Конечно, такая задача видится совершенно недостижимой, однако более вдумчивый подход позволяет предсказать поведение системы в различных условиях и максимально приблизиться к эталонным показателям. Это и есть главная цель проектирования систем отопления, важнейшей частью которого по праву считается гидравлический расчёт.
Практические цели гидравлического расчёта таковы:
- Понять, с какой скоростью и в каком объёме осуществляется перемещение теплоносителя в каждом узле системы.
- Определить, какое влияние оказывает изменение режима работы каждого из устройств на весь комплекс в целом.
- Установить, какая производительность и рабочие характеристики отдельных узлов и устройств будут достаточными для выполнения отопительной системой своих функций без значительного удорожания и обеспечения необоснованно высокого запаса надёжности.
- В конечном итоге — обеспечить строго дозированное распределение тепловой энергии по различным зонам отопления и гарантировать, что это распределение будет сохраняться с высоким постоянством.
Можно сказать больше: без хотя бы базовых расчётов невозможно добиться приемлемой стабильности работы и долговечного использования оборудования. Моделирование действия гидравлической системы, по сути, является базисом, на котором строится вся дальнейшая проектная разработка.
Гидравлический расчет системы отопления
Проживание в большинстве регионов страны вынуждает заботиться о качественном, надежном и эффективном отоплении собственного жилья. Традиционно для многоквартирных домов применяется централизованное отопление, однако, в последнее время популярными стали автономные системы, которые предусматривают монтаж всех элементов замкнутого контура от котла до радиаторов в пределах одной квартиры.
Частные дома не имеют подвода централизованного топления, поэтому в них установка независимой отопительной системы является неотъемлемым атрибутом жилья. И для автономных систем в квартирах, и для частного сектора требуется грамотный гидравлический расчет системы отопления. Такой подход обеспечит разумный баланс в использовании материалов и получении необходимого результата в виде достаточной температуры в помещении.
Проверка того, что установка работает как нужно …
TA Select 4 связывается с нашим новым балансировочным инструментом TA SCOPE и позволяет легко загружать и выгружать системную информацию в/из программы TA SCOPE. Это ускоряет процесс балансировки и дает возможность проверить, что система при вводе в эксплуатацию соответствует оригинальной конструкции. Затем конструкцию установки (гидравлической сети), спроектированной в TA Select вы загружаете в TA-SCOPE и производите балансировку. После балансировки установки, измеренные данные загружаются в TA Select. Проверяется расход, перепад давления, 2 температуры, перепад давления и мощность. На выходе вы получаете документ в форме распечатанного отчета.
Вычисление местных сопротивлений
Местные сопротивления возникают в трубе и арматуре. На величину данных показателей влияют:
- шероховатость внутренней поверхности трубы;
- наличие мест расширения или сужения внутреннего диаметра трубопровода;
- повороты;
- протяженность;
- наличие тройников, шаровых кранов, приборов балансировки и их количество.
Сопротивление рассчитывается для каждого участка, который характеризуется постоянным диаметром и неизменным расходом теплоносителя (в соответствии с тепловым балансом помещения).
Исходные данные для расчета:
- длина расчетного участка – l, м;
- диаметр трубы – d, мм;
- заданная скорость теплоносителя – u, мм;
- характеристики регулирующей арматуры, предоставляемые производителем;
- коэффициент трения (зависит от материала трубы), λ;
- потери на трение – ∆Pl, Па;
- плотность теплоносителя (расчетная) – ρ = 971,8 кг/м3;
- толщина стенки трубы – dн х δ, мм;
- эквивалентная шероховатость трубы – kэ, мм.
Гидравлическое сопротивление – ∆P на участке сети рассчитывается по формуле Дарси-Вейсбаха.
Символ ξ в формуле означает коэффициент местного сопротивления.
Если в доме стоит печка, отопить она сможет лишь небольшое помещение. Установка батарей отопления в частном доме большой площади обязательна, так как в противном случае отдаленные от печи комнаты отапливаться не будут.
Основные характеристики газового котла Buderus представлены в этом обзоре.
О том, как запустить газовый котел, расскажем в этой статье.
VIBROS
Модуль VIBROS является частью комплекса TEPLOOV, обеспечивающим расчет концентрации вредных веществ в атмосфере из-за выброса котельных по унифицированным программам расчета загрязнения атмосферы (УПРЗА) типа Эколог.
Обзор программ
Для удобства расчётов применяются любительские и профессиональные программы вычисления гидравлики.
Самой популярной является Excel.
Можно воспользоваться онлайн-расчётом в Excel Online, CombiMix 1.0, или онлайн-калькулятором гидравлического расчёта. Стационарную программу подбирают с учётом требований проекта.
Главная трудность в работе с такими программами — незнание основ гидравлики. В некоторых из них отсутствуют расшифровки формул, не рассматриваются особенности разветвления трубопроводов и вычисления сопротивлений в сложных цепях.
Особенности программ:
- HERZ C.O. 3.5 – производит расчёт по методу удельных линейных потерь давления.
- DanfossCO и OvertopCO – умеют считать системы с естественной циркуляцией.
- «Поток» (Potok) — позволяет применять метод расчёта с переменным (скользящим) перепадом температур по стоякам.
Следует уточнять параметры ввода данных по температуре — по Кельвину/по Цельсию.
Мощность генератора тепла
Одним из основных узлов отопительной системы является котел: электрический, газовый, комбинированный – на данном этапе не имеет значения. Поскольку нам важна главная его характеристика – мощность, то есть количество энергии за единицу времени, которая будет уходить на отопление.
Мощность самого котла определяется по ниже приведённой формуле:
Wкотла = (Sпомещ*Wудел) / 10,
где:
- Sпомещ – сумма площадей всех комнат, которые требую отопления;
- Wудел – удельная мощность с учётом климатических условий местоположения (вот для чего нужно было знать климат региона).
Что характерно, для разных климатических зон имеем следующие данные:
- северные области – 1,5 – 2 кВт/м2;
- центральная зона – 1 – 1,5 кВт/м2;
- южные регионы – 0,6 – 1 кВт/м2.
Эти цифры достаточно условны, но тем не менее дают явный численный ответ относительно влияния окружающей среды на систему отопления квартиры.
На данной карте представлены климатические зоны с разными температурными режимами. От расположения жилья относительно зоны и зависит сколько нужно тратить на обогрев метра квадратного кВатт энергии (+)
Сумма площади квартиры которую необходимо отапливать – равна общей площади квартиры и равна, то есть – 65,54-1,80-6,03=57,71 м2 (минус балкон). Удельная мощность котла для центрального региона с холодной зимой – 1,4 кВт/м2. Таким образом, в нашем примере расчётная мощность котла отопления эквивалентна 8,08 кВт.
Определение потерь
Гидравлическое сопротивление главного циркуляционного кольца представляет собой сумму потерь его составляющих элементов:
- первичного контура – ∆Plk;
- местных систем – ∆Plм;
- генератора тепла – ∆Pтг;
- теплообменника ∆Pто.
Сумма всех этих величин и дает полное гидравлическое сопротивление системы ∆Pсо.
Как работать в EXCEL
Использование таблиц Excel очень удобно, поскольку результаты гидравлического расчёта всегда сводятся к табличной форме. Достаточно определить последовательность действий и подготовить точные формулы.
Ввод исходных данных
Выбирается ячейка и вводится величина. Вся остальная информация просто принимается к сведению.
Ячейка | Величина | Значение, обозначение, единица выражения |
---|---|---|
D4 | 45,000 | Расход воды G в т/час |
D5 | 95,0 | Температура на входе tвх в °C |
D6 | 70,0 | Температура на выходе tвых в °C |
D7 | 100,0 | Внутренний диаметр d, мм |
D8 | 100,000 | Длина, L в м |
D9 | 1,000 | Эквивалентная шероховатость труб ∆ в мм |
D10 | 1,89 | Сумма коэф. местных сопротивлений — Σ(ξ) |
Пояснения:
- значение в D9 берётся из справочника;
- значение в D10 характеризует сопротивления в местах сварных швов.
Формулы и алгоритмы
Выбираем ячейки и вводим алгоритм, а также формулы теоретической гидравлики.
Ячейка | Алгоритм | Формула | Результат | Значение результата |
---|---|---|---|---|
D12 | !ERROR! D5 does not contain a number or expression | tср=(tвх+tвых)/2 | 82,5 | Средняя температура воды tср в °C |
D13 | !ERROR! D12 does not contain a number or expression | n=0,0178/(1+0,0337*tср+0,000221*tср2) | 0,003368 | Кинематический коэф. вязкости воды — n, cм2/с при tср |
D14 | !ERROR! D12 does not contain a number or expression | ρ=(-0,003*tср2-0,1511*tср+1003, 1)/1000 | 0,970 | Средняя плотность воды ρ,т/м3 при tср |
D15 | !ERROR! D4 does not contain a number or expression | G’=G*1000/(ρ*60) | 773,024 | Расход воды G’, л/мин |
D16 | !ERROR! D4 does not contain a number or expression | v=4*G:(ρ*π*(d:1000)2*3600) | 1,640 | Скорость воды v, м/с |
D17 | !ERROR! D16 does not contain a number or expression | Re=v*d*10/n | 487001,4 | Число Рейнольдса Re |
D18 | !ERROR! Cell D17 does not exist | λ=64/Re при Re≤2320 λ=0,0000147*Re при 2320≤Re≤4000 λ=0,11*(68/Re+∆/d)0,25 при Re≥4000 |
0,035 | Коэффициент гидравлического трения λ |
D19 | !ERROR! Cell D18 does not exist | R=λ*v2*ρ*100/(2*9,81*d) | 0,004645 | Удельные потери давления на трение R, кг/(см2*м) |
D20 | !ERROR! Cell D19 does not exist | dPтр=R*L | 0,464485 | Потери давления на трение dPтр, кг/см2 |
D21 | !ERROR! Cell D20 does not exist | dPтр=dPтр*9,81*10000 | 45565,9 | и Па соответственно D20 |
D22 | !ERROR! D10 does not contain a number or expression | dPмс=Σ(ξ)*v2*ρ/(2*9,81*10) | 0,025150 | Потери давления в местных сопротивлениях dPмс в кг/см2 |
D23 | !ERROR! Cell D22 does not exist | dPтр=dPмс*9,81*10000 | 2467,2 | и Па соответственно D22 |
D24 | !ERROR! Cell D20 does not exist | dP=dPтр+dPмс | 0,489634 | Расчетные потери давления dP, кг/см2 |
D25 | !ERROR! Cell D24 does not exist | dP=dP*9,81*10000 | 48033,1 | и Па соответственно D24 |
D26 | !ERROR! Cell D25 does not exist | S=dP/G2 | 23,720 | Характеристика сопротивления S, Па/(т/ч)2 |
Пояснения:
- значение D15 пересчитывается в литрах, так легче воспринимать величину расхода;
- ячейка D16 — добавляем форматирование по условию: «Если v не попадает в диапазон 0,25…1,5 м/с, то фон ячейки красный/шрифт белый».
Для трубопроводов с перепадом высот входа и выхода к результатам добавляется статическое давление: 1 кг/см2 на 10 м.
Оформление результатов
Авторское цветовое решение несёт функциональную нагрузку:
- Светло-бирюзовые ячейки содержат исходные данные – их можно менять.
- Бледно-зелёные ячейка — вводимые константы или данные, мало подверженные изменениям.
- Жёлтые ячейки — вспомогательные предварительные расчёты.
- Светло-жёлтые ячейки — результаты расчётов.
- Шрифты:
- синий — исходные данные;
- чёрный — промежуточные/неглавные результаты;
- красный — главные и окончательные результаты гидравлического расчёта.
Результаты в таблице Эксель
Пример от Александра Воробьёва
Пример несложного гидравлического расчёта в программе Excel для горизонтального участка трубопровода.
Исходные данные:
- длина трубы100 метров;
- ø108 мм;
- толщина стенки 4 мм.
Таблица результатов расчёта местных сопротивлений
Усложняя шаг за шагом расчёты в программе Excel, вы лучше осваиваете теорию и частично экономите на проектных работах. Благодаря грамотному подходу, ваша система отопления станет оптимальной по затратам и теплоотдаче.
Эффективность системы отопления «на глазок»
Во многом суммы таких затрат зависят от:
- требуемых диаметров трубопроводов
- фитингов и соответствующих им приборов отопления
- переходников
- регулировочной и запорной арматуры
Желание минимизировать такие затраты не должно идти в ущерб качеству, но принцип разумной достаточности, некий оптимум, должен выдерживаться.
В большинстве современных индивидуальных отопительных комплексов применяются электронасосы для обеспечения принудительной циркуляции теплоносителя, в качестве которого часто используются незамерзающие составы антифризов. Гидравлическое сопротивление таких систем отопления для разных их типов теплоносителей будет разным.
Учитывая постоянно растущую стоимость энергоносителей (все виды топлива, электроэнергия) и расходных материалов (теплоносители, запчасти и пр.), следует с самого начала стремиться заложить в систему принцип минимизации расходов на эксплуатацию системы. Опять же, исходя из их оптимального соотношения для решения задачи создания комфортного температурного режима в отапливаемых помещениях.
Разумеется, соотношение мощности всех элементов отопительной системы должны обеспечивать оптимальный режим подачи теплоносителяк приборам отопления в объёме достаточном для выполнения основной задачи всей системы — обогрева и поддержания заданного температурного режима внутри помещения, независимо от изменения наружных температур. К элементам отопительной системы относятся:
- котел
- насос
- диаметр труб
- регулировочная и запорная арматура
- тепловые приборы
Помимо того, очень неплохо, если в проект изначально будет заложена определённая «эластичность», допускаюшая переход на иной вид теплоносителя (замена воды на антифриз). Кроме того, отопительная система, при меняющихся режимах эксплуатации никоим образом не должна вносить дискомфорт во внутренний микроклимат помещений.
Видео на тему
Источники: http://www.portaltepla.ru/montagh-otopleniya/gidravlicheskij-raschet-sistemi-otopleniya/, http://strojdvor.ru/otoplenie/delaem-gidravlicheskij-raschet-sistemy-otopleniya-s-pomoshhyu-programm-gotovyx-form-excel-i-samostoyatelno/, http://microklimat.pro/sistemy-otopleniya/raschet-sistem-otopleniya/gidravlicheskij.html