Паровая турбина – Вики

Монтаж ротора паровой турбины, производства компании Siemens, Германия

Конструкция паровых турбин

Схематический продольный разрез активной паровой турбины с тремя ступенями давления: 1 – кольцевая камера свежего пара; 2 – сопла первой ступени; 3 – лопатки первой ступени; 4 – сопла второй ступени; …

П. т. со­сто­ит из двух осн. час­тей – ро­то­ра с ло­пат­ка­ми (под­виж­ная часть тур­би­ны) и ста­то­ра с со­пла­ми (не­под­виж­ная часть). По­ток па­ра, об­ра­зую­щий­ся в па­ро­вом кот­ле, под вы­со­ким дав­ле­ни­ем по­сту­па­ет че­рез на­прав­ляю­щие (ста­тор с со­пла­ми) на кри­во­ли­ней­ные ло­пат­ки тур­би­ны, за­кре­п­лён­ные по ок­руж­но­сти ро­то­ра, и, воз­дей­ст­вуя на них, при­во­дит ро­тор, за­кре­п­лён­ный на од­ном ва­лу с элек­тро­гене­ра­то­ром, во вра­ще­ние (про­ис­хо­дит пре­об­ра­зо­ва­ние те­п­ло­вой энер­гии па­ра в ме­ха­нич. ра­бо­ту). Ка­ж­дый ряд на­прав­ляю­щих и ло­па­ток на­зы­ва­ет­ся сту­пе­нью тур­би­ны (как пра­ви­ло, П. т. име­ет неск. сту­пе­ней). Кор­пус П. т. с не­сколь­ки­ми сту­пе­ня­ми дав­ле­ния раз­де­ля­ют диа­фраг­ма­ми на отд. ка­ме­ры, в ка­ж­дой из ко­то­рых по­ме­щён один из дис­ков с ло­пат­ка­ми (рис.). Пар мо­жет про­ни­кать из од­ной ка­ме­ры в дру­гую толь­ко че­рез со­пла, рас­по­ло­жен­ные по ок­руж­но­сти диа­фрагм. Дав­ле­ние па­ра сни­жа­ет­ся по­сле ка­ж­дой сту­пе­ни, а ско­ро­сти ис­те­че­ния па­ра ос­та­ют­ся при­мер­но оди­на­ко­вы­ми, что дос­ти­га­ет­ся вы­бо­ром со­от­вет­ст­вую­щих раз­ме­ров со­пел.

Ро­то­ры П. т., пред­на­зна­чен­ные для при­во­да элек­трич. ге­не­ра­то­ров, ра­бо­таю­щих на элек­трич. сеть, име­ют фик­си­ро­ван­ную час­то­ту вра­ще­ния – 3000 об/мин в Рос­сии и 3600 об/мин в США и др. стра­нах. Ро­то­ры П. т., пред­на­зна­чен­ных для др. по­тре­би­те­лей мощ­но­сти, мо­гут иметь др. час­то­ту вра­ще­ния, со­от­вет­ст­вую­щую ха­рак­те­ри­сти­кам обо­ру­до­ва­ния по­тре­би­те­ля (напр., транс­порт­ные тур­би­ны). Дав­ле­ние и темп-ра па­ра пе­ред тур­би­ной оп­ре­де­ля­ют­ся её на­зна­че­ни­ем.

Мощ­ные П. т. име­ют слож­ную кон­струк­цию и боль­шие раз­ме­ры (см. рис. к ст. Кон­ден­са­ци­он­ная тур­би­на). Дли­на все­го аг­ре­га­та мо­жет дос­ти­гать 30 м. П. т. рас­по­ла­га­ет­ся на фун­да­мен­те, пред­став­ляю­щем со­бой мно­го­опор­ную жел.-бе­тон. кон­ст­рук­цию, опи­раю­щую­ся на об­щую фун­да­мент­ную пли­ту. Кон­ст­рук­ция П. т. раз­де­ля­ет­ся на неск. ци­лин­д­ров (час­тей) – вы­со­ко­го дав­ле­ния (ЦВД), сред­не­го дав­ле­ния (ЦСД) и низ­ко­го дав­ле­ния (ЦНД). Обыч­но мощ­ная П. т. име­ет один ЦВД, один или два ЦСД и неск. ЦНД. Пар по­сту­па­ет в тур­би­ну, про­хо­дит че­рез ЦВД по­сле­до­ва­тель­но все сту­пе­ни, да­лее че­рез ЦСД (од­ним или дву­мя па­рал­лель­ны­ми по­то­ка­ми), за­тем, раз­ветв­ля­ясь ещё на неск. па­рал­лель­ных по­то­ков, про­хо­дит ЦНД и сбра­сы­ва­ет­ся в кон­ден­са­тор. Раз­ветв­ле­ние по­то­ков пе­ред кон­ден­са­то­ром не­об­хо­ди­мо для уве­ли­че­ния еди­нич­ной мощ­но­сти тур­би­ны, т. к. од­но­по­точ­ная тур­би­на мо­жет вы­ра­ба­ты­вать ог­ра­ни­чен­ную мощ­ность, ко­то­рая за­ви­сит от дли­ны ра­бо­чих ло­па­ток по­след­ней сту­пе­ни. Для обес­пе­че­ния на­дёж­ной экс­плуа­та­ции П. т. ос­на­ща­ет­ся сис­те­мой безо­пас­но­сти, пре­дот­вра­щаю­щей воз­ник­но­ве­ние и раз­ви­тие ава­рий­ных си­туа­ций. Осн. пре­иму­ще­ст­ва П. т.: вы­со­кая еди­нич­ная мощ­ность, ши­ро­кий диа­па­зон мощ­но­стей, вы­со­кий ре­сурс ра­бо­ты. Не­дос­тат­ки П. т.: вы­со­кая инер­ци­он­ность (дол­гое вре­мя пус­ка и ос­та­но­ва), до­ро­го­виз­на строи­тель­ст­ва и ре­мон­та. В П. т., ис­поль­зуе­мых на ТЭС, дав­ле­ние па­ра мо­жет дос­ти­гать 24 МПа и бо­лее, темп-ра – 545–600 °C; мощ­но­сти П. т., ра­бо­таю­щих на ТЭС, – до 1200 МВт, АЭС – до 1900 МВт. Кпд со­вре­мен­ных П. т. дос­ти­га­ет 40–42%.

Цветные поляны. Новый флешмоб!

Объявляю новый флешмоб. Или марафон. Или просто движуху. Кому как нравится называть:) Самый простой, классический. Без условий и заданий, без подписок на спонсоров и без раскрутки. 

А просто так, для радости:)

В прошлый раз когда мне хотелось в марте-апреле фотографировать здания и разбираться с архитектурой в прозрачном воздухе ранней весны, вы поддержали мою затею “Архитектурные прогулки” и активно участвовали в моих уроках архитктуры для детей на свежем воздухе:)

А теперь, на излете весны в самое буйство красок, надеюсь, поддержите и эту затею.

Ведь у всех сейчас полный фотоаппарат цветов? 

И вы тоже чувствуете, что весна проходит мимо каждую минуту? Только-только в одуванчиках фотографировались, а вот вам уже и маки… 

Хочется все эти миги цветения успеть поймать? И самим полюбоваться, и другим показать?

Для этого и нужен флешмоб!

Делитесь своими фото в соцсети Инстаграм или во ВКонтакте под тегом #цветныеполяны

Иначе куда деть эти мегабайты весеннего настроения? Лично меня они просто распирают! И я с удовольствием посмотрю на ваши:)

Ведь как не поделиться цветущими полями Крыма с моими подписчиками и единомышленниками? А ведь вы единомышленники, раз вы мой блог читаете:) Читаете – значит вы из тех, кто как и я, смотрит вокруг широко открытыми глазами.

Поэтому вместе со мной публикуйте в соцсетях свои фото цветущих полян, полей или просто клумб. И ставьте тег #цветныеполяны

Я очень надеюсь, что у нас вместе соберется палитра цветов весеннего настроения со всех уголков мира.

Давайте делиться им!

флешмоб цветные поляны
0_f7908_f84b19f9_orig.png

Для публикации сообщений создайте учётную запись или авторизуйтесь

Вы должны быть пользователем, чтобы оставить комментарий

История

Турбоход Turbinia на испытаниях. 1897 год.

При современных мощностях XX века паровая машина как главный судовой двигатель уже не могла обеспечить нужную мощность и экономичность, установки получались громоздкими и малоэффективными. Настало время этому двигателю передать эстафету турбине и двигателям внутреннего сгорания.

Turbinia в Музее Открытий. 1897 год.

Турбина в качестве главного двигателя первый раз была использована на судне Turbinia. Корабль имел водоизмещение 45 тонн и был спущен на воду в Англии конструктором Чарлзом Парсонсом. Многоступенчатая паротурбинная установка включала в себя паровые котлы и три турбины, соединенных напрямую с гребным валом. Каждый гребной вал имел три винта. Общая мощность турбин составляла 2000 л.с. при 200 оборотов в минуту. В ходе проведения ходовых испытаний в 1896 году турбоход развил скорость 34,5 узла. В настоящее время судно находится в Музее Открытий в Ньюкасле, а её турбина – в Лондонском Музее науки.

Яхта-миноносец «Ласточка».

В России первым турбинным судном была яхта-миноносец «Ласточка» (1904 г.). Это бывшее английское опытное судно Carolina, построенное в 1904—1905 гг., было куплено Морведом для обучения персонала и производства опытов с турбоагрегатами. Корабль имел две силовые установки по 1000 л.с. каждая и при водоизмещении 140 тонн развивал максимальную скорость хода 18,5 узлов.

Линкор Bismarck.

Во время Второй мировой войны паровая турбина использовалась как главная энергетическая установка. На гордости Германии — линкоре Bismarck были установлены 3 турбозубчатых агрегата мощностью 46000 л.с. каждая. Корабль со стандартным водоизмещением 41700 т. развивал скорость около 30 узлов.

Линкор Tirpitz.

На втором корабле этой серии (Tizpitz), который британцы прозвали “Гитлеровская зверюга”, стояли три турбины Brown Boveri & Cie. Скорость хода была 30,8 узлов при водоизмещении 45474 тонны.

Японский линкор Yamato.

На крупнейшем линкоре в истории флота — японском «Ямато» были установлены 4 ТЗА Kampon. При водоизмещении 63200 тонн корабль развивал скорость 27,5 узлов.

Линкор «Севастополь».

На «Севастополе», линкоре русского и советского флота, стояло десять турбин Парсонса общей мощностью 32000 л.с, что обеспечивало кораблю скорость хода около 22 узлов.

«Адмирал флота Советского Союза Кузнецов».

В настоящее время паровые турбины отошли на второй план. Но их эксплуатация на некоторых судах продолжается. Например, на тяжелом авианесущем крейсере «Адмирал флота Советского Союза Кузнецов» стоят 4 паровые турбины по 50 тыс. л.с. каждая. Максимально допустимая скорость составляла 29 узлов.

Общие сведения

Кратко устройство и строение паровой турбины выглядит следующим образом. На вал крепится диск, куда закрепляются лопатки. Возле этих элементов также находятся трубы сопла, через которые подается пар. Во время его подачи он создает некоторое давление на лопатки, что приводит к его вращению.

Сегодня в этом оборудовании обычно применяется несколько дисков, находящихся на общем валу. При использовании этой конструкции энергия пара, которая проходит через все диски, частично передается этим элементам.

Строение паровой турбины

Достоинства турбинных установок:

  • коэффициент полезного действия равен одной заданной величине;
  • могут работать на различных видах топлива: твердое, жидкое, газовое;
  • большой ресурс;
  • огромный диапазон мощностей;
  • широкий выбор теплоносителя.

В основном эти агрегаты используются на тепловых и атомных электростанциях, также они нашли применение на морских судах.

Конструкция сопла

Конструкция сопла

Через сопло проходит пар. В первых конструкциях, когда еще не были полностью изучены свойства расширения пара, сконструировать рационально работающую конструкцию с высоким КПД было невозможно.

Основная причина — сопло, которое применялось изначально, по всей длине было одинаковое по диаметру. Это повлекло то, что носитель, переходя в парообразное состояние, проходил через трубу и попадал в пространство с низким давлением. Его не хватало для нормальной работы турбины.

При этом во время выхода из этого сопла пар клубился из-за атмосферных расширений. Эти недостатки получилось исправить, когда изменили устройство трубы. Теперь пар в начале своего прохождения попадал в зауженную часть сопла, а на окончании оно постепенно увеличивалось в диаметре. Это позволило избавиться от клубов пара, поскольку они значительно понижали скорость.

Как сделать паровую турбину в домашних условиях?

Множество интернет-ресурсов публикует алгоритм, согласно которому в домашних условиях и с применением небольшого количества инструментов изготавливается мини паровая турбина из консервной банки. Помимо самой банки понадобится алюминиевая проволока, небольшой кусочек жести для вырезания полоски и крыльчатки, а также элементы крепежа.

миниатюрный паровой агрегат

В крышке банки делают 2 отверстия и впаивают в одно кусочек трубки. Из куска жести вырезают крыльчатку турбины, прикрепляют ее к полосе, согнутой в виде буквы П. Затем полосу прикручивают ко второму отверстию, расположив крыльчатку таким образом, чтобы лопасти находились напротив трубки. Все технологические отверстия, сделанные во время работы, тоже запаивают. Изделие нужно установить на подставку из проволоки, заполнить водой из шприца, а снизу разжечь сухое горючее. Импровизированный ротор паровой турбины начнет вращаться от струи пара, вырывающегося из трубки.

установка, сделанная своими руками

Понятно, что такая конструкция может служить лишь прототипом, игрушкой, поскольку данная паровая турбина, сделанная своими руками, не может использоваться с какой-то целью. Слишком мала мощность, а о каком-то КПД и речи не идет. Разве что можно показывать на ее примере принцип действия теплового двигателя.

Мини-генератор электроэнергии можно реально изготовить из старого металлического чайника. Для этого, кроме самого чайника, потребуется медная или нержавеющая трубка с тонкими стенками, кулер от компьютера и небольшой кусочек листового алюминия. Из последнего вырезается круглая крыльчатка с лопатками, из которой будет сделана паровая турбина малой мощности.

мини-генератор электроэнергии

С кулера снимается электродвигатель и устанавливается на одной оси с крыльчаткой. Получившееся устройство монтируется в круглом корпусе из алюминия, по размерам он должен подойти вместо крышки чайника. В днище последнего делается отверстие, куда впаивается трубка, а снаружи из нее выполняется змеевик. Как видите, конструкция паровой турбины очень близка к реальности, поскольку змеевик играет роль пароперегревателя. Второй конец трубки, как нетрудно догадаться, подводится к импровизированным лопаткам крыльчатки.

самодельная паровой генератор

Примечание. Самая сложная и трудоемкая часть устройства – это как раз змеевик. Изготовить его из медной трубки легче, чем из нержавейки, но она долго не прослужит. От контакта с открытым огнем медный перегреватель быстро прогорит, поэтому лучше сделать его своими руками из нержавеющей трубки.

Войти

Уже есть аккаунт? Войти в систему.

Войти

  • Последние посетители   0 пользователей онлайн

    Ни одного зарегистрированного пользователя не просматривает данную страницу

  • Активность
  • Главная
  • Технологии металлообработки
  • Общий
  • Паровая Турбина

Механическое оборудование

Статор, который имеет вращающийся ротор и металлический корпус

В конструкции устройства находится три цилиндра, они собой представляют статор, который имеет вращающийся ротор и металлический корпус. Отдельно находящиеся роторы соединены муфтами. Цепочку, собирающуюся из котла, генератора и роторов, называют валопроводом. Его максимальный размер может быть не более 80 м.

Валопровод производит вращение во вкладышах в опорных подшипниках. Вся работа происходит в масляной среде, металлических элементов вкладышей вал не касается. Сегодня роторы устанавливаются на двух подшипниках.

В определенных ситуациях между роторами, которые принадлежат к ЦСД и ЦВД, находится только один подшипник. Пар, расширяющийся в турбине, заставляет роторы вращаться. Вся мощность, вырабатывающаяся отдельным элементом, суммируется на полумуфте в общий показатель и здесь же доходит до своего максимума.

Помимо того, все части находятся под действием осевого усилия. Оно суммируется, а общий показатель переходит с гребня на упорные элементы, которые установлены в корпусе подшипника.

Применение паровой турбины

Налив в чайник воды и поставив его на включенный газ, можно убедиться, что при закипании энергии выходящего из трубки пара достаточно, чтобы на выходе электродвигателя появилась ЭДС. Для этого к нему стоит подключить светодиодный фонарик. Помимо питания для электрических лампочек, возможно и другое применение паровой турбины, например, для зарядки аккумулятора сотового телефона.

турбинированный чайник с электрогенератором

В условиях квартиры или частного дома подобная мини-электростанция может показаться простой игрушкой. А вот оказавшись в походе и взяв с собой турбированный чайник с электрогенератором, вы сможете оценить по достоинству его функциональность. Возможно, в процессе вам удастся найти еще какое-нибудь назначение турбины. Больше информации об изготовлении походного генератора из чайника можно узнать, посмотрев видео:

Сравнение с другими энергетическими установками

Судовой двигатель КПД Условия эксплуатации Вид топлива Безопасность персонала Экологический эффект Время пуска Размеры Материалы изготовления
Паровая машина 8%-15% Простота обслуживания Практически любой вид топлива Высокая безопасность Выброс токсичных газов в атмосферу От получаса до нескольких часов Громоздкая, большое число вспомогательного оборудования Высокопрочные материалы для цилиндров, движущихся частей
Паровая турбина 30%-35% Повышенное обслуживание при номинальном режиме работы Уголь, мазут Относительная опасность из-за работы с рабочей средой высоких параметров Выброс токсичных газов в атмосферу, слив горячей заборной воды От получаса до нескольких часов Громоздкая, большое число вспомогательного оборудования Жаропрочные, термостойкие материалы для турбины и основного оборудования
Газовая турбина 25%-30% Минимальное обслуживания, повышенная надежность работы Газ, мазут Высокая безопасность при номинальном режиме работы Выброс в атмосферу токсичных газов с достаточно высокой температурой 15-30 минут Компактность, отсутствие большого числа вспомогательного оборудования Термически устойчивые материалы для лопаток первых ступеней турбины
Двигатель внутреннего сгорания 30%-36% Повышенная шумность, наличие прямолинейно-возвратного движения рабочих частей Мазут, дизельное топливо Низкая опасность для персонала Токсичность отработавших газов повышена Практически мгновенно Громоздкая (при повышенной мощности), отсутствие большого числа вспомогательного оборудования Высокопрочные материалы для цилиндров, движущихся частей
Ядерная энергетическая установка 35%-40% Постоянный контроль процесса Ядерное топливо (уран-235, плутоний и т.д.) Высокая опасность из-за радиоактивного излучения Загрязнение отходами отработанного радиоактивного топлива Несколько дней при пуске из холодного состояния, из горячего состояния – минуты Громоздкая, большое число вспомогательного оборудования Высокопрочные и дорогие материалы для защиты персонала

Примечание к таблице

Продолжительное время пуска паровой турбины объясняется необходимостью прогрева как самой турбины, так и парогенератора со всеми необходимыми паропроводами. Все это занимает много времени.

Эксплуатация газовой турбины значительно проще чем паровой, т.к. вода не используется как рабочее тело цикла. Следовательно, нет необходимости в конденсаторе, питательном, конденсатном и циркуляционном насосах, трубопроводах.

Относительная безопасность эксплуатации паровой и газовой турбин достигается заключением в отдельный корпус всех движущихся частей.

Ссылки

  • ГОСТ 20689-80 ТУРБИНЫ ПАРОВЫЕ СТАЦИОНАРНЫЕ ДЛЯ ПРИВОДА КОМПРЕССОРОВ И НАГНЕТАТЕЛЕЙ
  • У. Гаррет Скейф. Паровая турбина Парсонса
  • «Живая» диаграмма (on-line расчет) расширения пара в паровой турбине

См. также

  • Турбина
  • Газотурбинный двигатель
  • Двигатель
  • Паровая машина
  • ГТ-МГР
  • Распределённая энергетика
  • Паротурбинная установка

Использование на атомных станциях

Использование на атомных станциях

Конструкцию турбины на атомных станциях можно рассмотреть на примере установок насыщенного пара, они находятся только на объектах, на которых применяется водяной теплоноситель. В этом случае нужно отметить, что изначальные показатели турбин на АЭС отличаются низкими параметрами. Это вынуждает использовать больше рабочего вещества, чтобы достигнуть требуемого результата. Помимо того, из-за этого появляется высокая влажность, быстро нарастающая по ступеням турбины. Это приводит к тому, что на атомных станциях применяются внешние влагоулавливающие и внутритурбинные конструкции.

Из-за повышенной влажности пара понижается КПД, а также очень быстро развивается коррозийный износ проточных элементов. Чтобы не допустить этой проблемы, приходится применять разные способы укрепления поверхности. К этим методам относится электроискровая шлифовка, закаливание, хромирование. Если на остальных объектах можно установить простейшую конструкцию турбин, то на атомной станции необходимо подумать не только о защите от коррозийных процессов, но и о выводе влаги.

Самым эффективным вариантом вывода излишней влаги из турбины является отбор пара, он передается на регенеративные подогреватели. Здесь нужно сказать, что если эти отборы находятся после каждой ступени расширения, то нет необходимости дополнительно разрабатывать внутритурбинные влагоулавливатели. Также необходимо отметить, что допустимая норма влажности пара рассчитывается с учетом размера лопатки и ее скорости вращения.

Ссылки

  • https://www.seaships.ru/steamturbine.htm
  • https://www.seaships.ru/steammachine.htm
  • https://www.krugosvet.ru/enc/nauka_i_tehnika/transport_i_svyaz/SUDOVIE_ENERGETICHESKIE_USTANOVKI_I_DVIZHITELI.html?page=0,0#part-1
  • https://korabley.net/news/sudovye_silovye_i_ehnergeticheskie_ustanovki/2009-09-15-360
  • https://korabley.net/news/sudovye_silovye_i_ehnergeticheskie_ustanovki/2010-05-31-577

Каково устройство паровых и газовых турбин

Наилучшим качеством, которое стало важнейшим преимуществом паровой турбины, является то, что она не требует какого-либо соединения с валом электрического генератора. Также это устройство отлично справлялось с перегрузками, и его легко можно было регулировать по частоте вращения. Коэффициент полезного действия у таких агрегатов также довольно высок, что в сочетании с другими преимуществами и вывело их на передний план, если возникала необходимость соединения с электрическими генераторами. Таким же является и устройство паровой турбины AEG.

Схожими объектами стали и газовые турбины. Если рассматривать эти приспособления с точки зрения конструкции, то они практически ничем не отличаются. Как и паровая турбина, газовая является машиной лопаточного типа. Кроме этого, в обоих агрегатах вращение ротора достигается за счет того, что происходит трансформация кинетической энергии потока рабочего вещества.

Существенное отличие между этими установками заключается как раз в типе рабочего вещества. Естественно, что в паровой турбине таким веществом является водяной пар, а в газовой установке – это газ, который чаще всего получен при сжигании каких-либо продуктов, либо является смесью пара и воздуха. Еще одно отличие заключается в том, что для образования этих рабочих веществ необходимо иметь разное дополнительное оборудование. Таким образом, получается, что сами по себе турбины очень похожи, но установки, образующиеся на объектах вокруг них, довольно сильно отличаются.

Турбина с конденсатом

Турбинная конструкция, находящаяся в котле, имеет три среды — жидкость, пар и конденсат. Они находятся в едином замкнутом контуре. В этом случае нужно сказать, что в этой среде при преобразовании теряется минимум воды и пара. В этой конструкции жидкость подвержена действию разных химических реагентов, их главное назначение — удалять из воды различные примеси.

Принцип работы в этом оборудовании состоит в следующем:

Турбина с конденсатом
  1. Отработанный пар, который уже имеет низкую температуру и давление, переходит по трубам в конденсатор.
  2. Во время прохождения этого участка на пути находится множество дополнительных трубочек, по ним насосом постоянно подкачивается холодная вода. Как правило, она забирается из прудов, озер или речек.
  3. Во время соприкосновения с охлажденной поверхностью отработанный пар образует конденсат.
  4. Весь собранный конденсат постоянно передается в конденсатор, а из него он дальше откачивается помпой. Затем жидкость перемещается в деаэратор.
  5. Из него вода заново транспортируется в котел, в котором переходит в парообразное состояние, и процесс повторяется.

Помимо основных элементов в конструкции находится дополнительно несколько устройств: подогреватель и турбонаддув.

Нужно отметить, что турбина вращается лишь в одном направлении и ее скорость может меняться в широких диапазонах. Другое преимущество турбин — это отсутствие толчков, которые происходят в ДВС во время передвижения поршней. Коэффициент полезного действия современных турбин достигает 45−55%, а мощность — 1700 МВт.

Паровая турбина (видео)

Паровая турбина своими руками – агрегат, который является сердцем практически любой электростанции, работает по принципу превращения энергии из паровой в механическую. Однако такую машину вполне можно сделать и в домашних условиях. Конечно же это будет мини-устройство, и скорее всего ваша самодельная турбина будет газовая или воздушная, но такая модель так же пригодится в быту как и паровая турбина для ТЭЦ. Правильно разработанные схема, чертеж и рисунок помогут вам добиться положительного результата от самоделки.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...