Теплообменник, виды теплообменных аппаратов

Теплообменник — это устройство, назначением которого является передача тепла от нагретой среды к холодной, которое используется в энергетике, металлургии, промышленности, на тепловых пунктах, в системах отопления, вентилирования и кондиционирования.

Содержание

Введение

Теплообменник – техническое устройство, предназначенное для передачи тепла между нагретой средой и холодной. Чаще всего теплообмен осуществляется через элементы конструкции аппарата, хотя встречаются агрегаты, принцип действия которых основан на смешении двух сред.

Области применения теплообменных аппаратов:

  • системы отопления;
  • металлургия;
  • энергетика;
  • тепловые пункты;
  • химическая и пищевая промышленности;
  • системы кондиционирования и вентилирования воздуха;
  • коммунальное хозяйство;
  • атомная и холодильная отрасли.

Основные виды теплообменников

Наиболее распространённые в промышленности рекуперативные теплообменники:

  • Кожухотрубчатые (кожухотрубные) теплообменники,
  • Элементные (секционные) теплообменники,
  • Двухтрубные теплообменники вида «труба в трубе»[2],
  • Витые теплообменники,
  • Погружные теплообменники,
  • Оросительные теплообменники,
  • Ребристые теплообменники,
  • Спиральные теплообменники,
  • Пластинчатые теплообменники,
  • Пластинчато-ребристые теплообменники,
  • Графитовые теплообменники,
  • Миниканальные теплообменники[3].
  • Геликоидные теплообменники

Что такое теплообменник?

Теплообменник — устройство, внутри которого происходит теплообмен между двумя теплоносителями, имеющими разные температуры. Устройство и принцип работы теплообменника разделим на несколько подпунктов.

Материалы изготовлени

Технология получения теплообменивающих устройств предусматривает их изготовление из материалов: латунь, медь, силумин (кремниево-алюминиевый сплав), нержавеющая сталь. Выбор материала зависит от конечной цели использования оборудования. Медные устройства применимы при изготовлении пива, а латунь чаще выбирают для комплектации оборудования, использующего повышенное давление.

Виды теплообменных аппаратов

Теплообменные аппараты подразделяются на несколько групп в зависимости от:

  • типа взаимодействия сред (поверхностные и смесительные);
  • типа передачи тепла (рекуперативные и регенеративные);
  • типа конструкции;
  • направления движения теплоносителя и теплопотребителя (одноходовые и многоходовые).

Наиболее наглядно классификация теплообменных аппаратов представлена на следующем изображении (если нужно увеличить картинку, то просто кликните по ней):

Классификация теплообменных аппаратов в зависимости от устройства и принципа работы

Рис. 1. Виды устройств теплообменников в зависимости от принципа работы

По типу взаимодействия сред

Поверхностные

Теплообменные аппараты данного вида подразумевают, что среды (теплоноситель и теплопотребитель) между собой не смешиваются, а теплопередача происходит через контактную поверхность – пластины в пластинчатых теплообменниках или трубки в кожухотрубных.

Смесительные

Кроме поверхностных теплообменников используются агрегаты, в основе эксплуатации которых лежит непосредственный контакт двух веществ.

Наиболее известным вариантом смесительных теплообменников являются градирни:

Градирни, как пример смесительного теплообменного аппарата

Рис. 2. Градирни – один из видов смесительных ТО

Градирни используются в промышленности для охлаждения больших объемов жидкости (воды) направленным потоком воздуха.

К смесительным теплообменникам относятся:

  • паровые барботеры;
  • сопловые подогреватели;
  • градирни;
  • барометрические конденсаторы.

По типу передачи тепла

Рекуперативные

В данном виде устройств теплопередача происходит непрерывно через контактную поверхность. Примером такого теплообменного аппарата является пластинчатый разборный теплообменник.

Регенеративные

Отличаются от рекуператоров тем, что движение теплоносителя и теплопотребителя имеют периодический характер. Основная область применения таких установок – охлаждение и нагрев воздушных масс.

Установки с подобным типом действия нужны в многоэтажных офисных зданиях, когда теплый отработанный воздух выходит из здания, но его энергию передают свежему входящему потоку.

Принцип работы регенеративного теплообменного аппарата

Рис. 3. Регенеративный теплообменник

На изображении видно, как в теплообменник поступают 2 потока: горячий (I) и холодный (II). Проходя через коллектор 1, горячая среда нагревает гофрированную ленту, свернутую в спираль. В это время через коллектор 3, проходит холодный поток.

Спустя какое-то время (от нескольких минут до нескольких часов), когда коллектор 1, заберет достаточное количество тепла (точное время зависит от тех. процесса), крыльчатки 2 и 4 поворачиваются.

Таким образом изменяется направление потоков I и II. Теперь холодный поток идет через коллектор 1 и забирает тепло.

По типу конструкции

Вариаций конструкций теплообменных аппаратов очень много. Их выбор и подбор конкретной модели зависит от большого количества условий эксплуатации и технических характеристик:

  • мощность теплообменника;
  • давление в системе;
  • тип сред (агрессивные или нет);
  • рабочие температуры;
  • прочие требования.

Подробную классификацию типов конструктивов теплообменных аппаратов можно посмотреть выше на Рис. 1.

По направлению движения сред

Одноходовые теплообменники

В данном виде агрегатов теплоноситель и теплопотребитель пересекают внутренний объем теплообменника однократно по кратчайшему пути. Наглядно это показано в следующем видео:

Подобная схема движения в ТО используется в простых случаях, когда не требуется повышать теплоотдачу от теплоносителя хладогенту. Кроме того, одноходовые теплообменники требуют более редкого обслуживания и промывки, так как на внутренних поверхностях скапливается меньше отложений и загрязнений.

Многоходовые теплообменники

Применяются, когда рабочие среды плохо отдают или принимают тепло, поэтому КПД теплообменного аппарата увеличивают за счет более длительного контакта теплоносителя с пластинами агрегата.

Пример работы двухходового пластинчатого теплообменника представлен в данном видео:

Устройство теплообменника

Как отмечалось выше, конструкции теплообменных аппаратов очень сильно отличаются между собой, поэтому подробно о каждой из них будет рассказано в следующих статьях.

В качестве примера можно рассмотреть пластинчатый разборный теплообменник, как наиболее современный и вытесняющий старые поколения теплообменных аппаратов: кожухотрубные (кожухотрубчатые), «труба в трубе» и другие виды.

Данный вид ТО состоит из двух главных пластин: подвижной и неподвижной прижимных плит. Обе плиты имеют несколько отверстий.

Отверстия, имеющие входящее и выходящее назначение потоков, надежно укрепляют специальной прокладкой и прочными кольцами спереди и сзади соответственно.

Устройство теплообменника на примере пластинчатого разборного аппарата

Рис. 4. Устройство РПТО

При монтаже к входным и выходным отверстиям через патрубки подключаются элементы трубопровода. Для соединения могут быть использованы трубы различного диаметра и с разным типом резьбы (современные требования предлагают использовать резьбу ГОСТа №12815 и ГОСТа №6357). Оба вида имеют прямую зависимость от устройства и его вида.

Посередине между прижимными плитами размещается множество пластин. Толщина пластин находится в пределах всего 0,5 мм, изготавливаются они, только из нержавеющей стали или титана с помощью метода холодной штамповки.

Все слои пластин перемежаются тонкой специальной уплотнительной резиной, которая устанавливается между всеми слоями пластин. Материал резины обладает заметной повышенной устойчивостью к высоким температурам, благодаря которой рабочие каналы становятся полностью герметичными.

Прямые направляющие снизу и сверху обеспечивают фиксацию пакета пластин, а также являются направляющими при сборке агрегата. Пластины сжимаются до необходимого размера при помощи затяжных гаек.

Внутреннее расположение пластин выбрано не случайно, каждая пластина через одну повернута на 180° относительно, рядом расположенных, соседних пластин. Благодаря данному устройству теплообменного аппарата входящее канальное отверстие имеет двойное уплотнение.

Наглядно устройство пластинчатого теплообменника, его сборку и принцип действия можно посмотреть в данном видео:

Нарушения в работе колонки и их устранение

Если вдруг потек водонагреватель, иногда причина состоит в износе прокладок. При снятии кожуха становится понятно, оправдалось ли это предположение. Отыскав свищ в теплообменнике, многие потребители интересуются: как заменить проблемную деталь. Но трудность в том, что цена запчасти достигает 30% от платы за совершенно новый нагреватель.

Куда практичнее запаять механический дефект, используя паяльник. Припой плавится примерно при 200 градусах. Точное значение определяется маркой конкретной детали. Даже если будет долго кипеть вода, она не нарушит целостность «заплатки». Подобное решение одинаково актуально для российских и иностранных колонок. Ведь риск поломки присутствует везде, различается только срок службы, но дефекты все равно появятся в любой модели.

См. также

  • Циркуляционный нагреватель

Примечания

  1. 1 2 Атомная энергетика. Словарь терминов
  2. 1 2 Теплообменники
  3. Технология Перекачиваемого Льда. Архивировано из первоисточника 14 февраля 2012. Проверено Апрель 3, 2011.
  4. Смесительный теплообменник.//Промышленная теплоэнергетика и теплотехника. Справочник. (Теплоэнергетика и теплотехника; Кн.4). Под общей ред. Клименко А. В. и Зорина В. М. М.: Издательство МЭИ, 2004. — 632 с.
  5. Н.Ф.Свиридов, Р.Н.Свиридов, И.Н.Ивуков, Б.Л.Терк Установка утилизации тепла дымовых газов // «Энергосбережение» №4/2002.
  6. Энергобезопасность в документах и фактах №2, 2006

Сферы применения

Пищевая промышленность. Производя спирт, пиво, растительное масло, сахар и молочные продукты, обязательно используют теплообменники. Здесь они предназначены для пастеризации продуктов, их охлаждения и возможного испарения. Для таких целей очень часто используют паяный вид пластинчатых теплообменников, хотя нередко также применяют разборной теплообменник.

Металлургия. Охлаждение на металлургии нужно как нигде. Это связано с тем, что печи, стаканы, различные гидравлические системы и другие устройства вырабатывают огромное количество тепла. Для снижения этого показателя используют пластинчатые теплообменники, которые выступают как охладители. В качестве охладителей могут использоваться паяные, сварные и даже спиральные теплообменники. Выбор устройства напрямую зависит от условий его эксплуатации.

Судостроение. За охлаждение главного двигателя судна и всей центральной системы также отвечает теплообменник. Здесь вместо обычной среды может быть использована морская вода или моторные масла различных уровней вязкости. Кроме этого на судне теплообменники могут применять для поддержания работы отопительной системы, для ГВС, но это касается исключительно крупных суден.

Нефтегазовая промышленность. Для крекинга, охлаждения и подогрева нефти также используются пластинчатые теплообменники. Зачастую такие теплообменники:

  • низкого давления
  • сетевые
  • химической подготовки воды

В таких теплообменниках принято использовать пластины из титана, толщиной в 7 миллиметров, с давление в 25 бар. Для такого оборудования применяют уплотнители NBR или Витон, если нужны прокладки устойчивые к высоким температурным условиям.

Коммунальное теплоснабжение. Подогрев воды, «теплый пол», горячее водоснабжение – для всего этого также используют пластинчатые теплообменники. Такое устройство способно работать при температуре до 150 градусов по Цельсию, с давлением до 16 кПа. В таких теплообменниках используют пластины из антикоррозийной стали, толщина которых может достигать 5 миллиметров. Имеется уплотнение из этиленпропилена.

Общие советы от специалистов

Принцип работы кожухотрубного теплообменникаТеплообменники имеют сложную структуру, хотя в большинстве случаев советы по их использованию сводятся к одинаковым фразам. Конечно же, конструкция каждого из них уникальна, а потому примером выступает кожухотрубный теплообменник.

Вся сложность заключена в единственном правиле – как и любой прибор на планете, устройство теплообменника требует ремонта. Каждая процедура ремонта влечёт ряд второстепенных проблем, который специалисты стараются решить подручными средствами и способами. В этом механизме, как и в большинстве видов, присутствуют разные трубки. Именно они и являются самой частой причиной поломок. При проведении даже диагностики исправности этих элементов конструкции, следует чётко понимать – малейшее неверное действие и прибор может снизить уровень работы.

Все чаще встречаются люди и организации, которые покупают несколько теплообменников сразу. Эта особенность позволяет сразу же заменить повреждённое устройство новым.

Некоторые нюансы могут возникнуть и при регулировке агрегатов. Если неправильно ввести значения, то площадь работы теплообменника резко снизится. В этом случае происходит нелинейное изменение рабочей площади.

Главным советом специалистов становится отказ от самостоятельных действий по созданию любого вида теплообменника. Процесс рассчитан исключительно на производственный монтаж, а потому в домашних условиях его повторить невозможно.

Существует большое количество теплообменников. Одни из них дешевле, другие надёжнее, а третьи выдают лучший результат работы. Выбрать прибор сложно, но, возможно, зная основные их характеристики. Не стоит забывать и о правилах использования устройств, будь это кожухотрубные или пластинчатые изделия. Каждый вид работает исключительно с чёткими параметрами давления и условиями окружающей среды. Не стоит забывать и о советах специалистов, работающих с механизмами не первый год и знающих их особенности.

  • Автор: Андрей Витальевич Васильев
  • Распечатать
Оцените статью:

(8 голосов, среднее: 4.1 из 5)

Литература

  • В. Н. Луканина. Теплотехника. — М., «Высшая школа», 2002 г.

Исходные данные и расчет теплообменника

1 — Температура на входе и выходе обоих контуров.
Пример: максимальная входная температура — 55°С, а LMTD — 10°С. Теплообменник будет дешевле и меньше в том случае, когда эта разница будет больше.

2 — Максимально допустимая рабочая температура, давление среды.
Цена будет ниже в случае плохих параметров.

3 — Массовый расход (m) рабочей среды в обоих контурах (кг/с, кг/ч).
Или пропускная способность теплообменника. Часто указывают лишь один параметр — объем расхода воды. Общий массовый расход можно вычислить если объем пропускной способности умножить на плотность. Например, плотность холодной воды в центральной системе примерно равна 0.99913.

4 — Тепловая мощность (Р, кВт).
Или тепловая нагрузка (количество тепла, отданное теплообменником) вычисляет по формуле:

P = m * cp *δt

  • где m – расход среды
  • cp – удельная теплоемкость (для воды, нагретой до 20 градусов, равна 4,182 кДж/(кг *°C))
  • δt – температурная разность на входе и выходе одного контура (t1 — t2)

5 — Дополнительные характеристики.

  • чтобы выбрать состав пластин, необходимо узнать в какой рабочей среде будет использоваться теплообменник и ее вязкость;
  • средний температурный напор LMTD (рассчитывается по формуле ΔT1 — ΔT2/( In ΔT1/ ΔT2), где ΔT1 = T1(температура на входе горячего контура) — T4(выход горячего контура) и ΔT2 = T2 (вход холодного контура) — T3 (выход холодного контура);
  • уровень загрязненности среды (R) — редко используют, так как этот параметр нужен только в некоторых случаях.

Видео «Как рассчитать теплообменник?»

Монтаж

Монтаж пластинчатого теплообменника, как наиболее распространенного, осуществляется по трем вариантам:

  • параллельному;
  • смешанному двухступенчатому;
  • последовательному двухступенчатому.

При параллельном монтаже требуется установить терморегулятор. Этот способ экономит пространство, время, а также не требует больших затрат. Двухступенчатая смешанная схема обеспечивает значительную экономию теплоносителя. Это достигается благодаря использованию обратного тока теплой воды для обогрева потока с более низкой температурой.

Использование последовательной схемы применяет разделение входящего потока на две ветки. Одна из них проходит сквозь регулятор, другая – сквозь подогреватель. Далее оба потока смешиваются, после чего попадают в отопительный блок. Это экономит теплоноситель. Полная автоматизация оборудования невозможна.

Теплообменники закрепляются на стене с помощью крепежной ленты, консоли и уголка, прикрепленного к нижней части устройства. После этого требуется провести установку фильтров. Минимальное условие – присутствие фильтрующей системы в системе теплоцентрали. Перед установкой стоит подготовить краны и американки – резьбовые разъемные соединительные компоненты. Каждый из них включает в состав накидную гайку, прокладку и два фитинга. Важно правильно подбирать запчасти, чтобы они подходили к диаметру системы подключения. Тогда монтаж не вызовет затруднений.

Теплообменник

Внешний вид пластинчатого теплообменника

Как правильно выбрать теплообменник

Зачем нужен теплообменник в системе отопления в быту, понятно. Какой аппарат подходит в конкретном контуре – зависит от условий монтажа. Можно поставить кожухотрубный т/о – он неприхотлив, может простоять без чистки 10 лет, только счета за использование теплоносителя будут все больше – нарушается теплопроводность. Можно поставить пластинчатый, но чистить его придется через 3 года.

Вас может заинтересовать:

Теплообменное оборудование
Кожухотрубные теплообменники
Горизонтальные теплообменники с U-образным трубным пучком

Рекомендуемые статьи

  • Классификация металлоконструкций

    Ещё в XIX веке человечество начало использовать сложные металлоконструкции – несущий каркас из составных металлических элементов. Их использование было связано со многими сложностями, но обладает и неоспоримыми преимуществами. На сегодняшний день они распространены почти повсеместно – при строительстве станков, аппаратов, механизмов, но чаще всего – при строительстве зданий и массивных сооружений. Прочность и лёгкость…

  • Запорная арматура — устройство и принцип действия

    Для управления потоками жидкостей и газов в трубопроводных системах, их линий и участков используются специальные устройства, называемые запорно-регулирующей арматурой. Данный вид трубопроводной арматуры предназначен для полного перекрытия или регулировки напора потока среды, управлением других технологический процессов, к которым относят: давление жидкости; напор; температуру; объем транспортируемого вещества. Для…

  • Метод рулонирования резервуаров

    Рулонирование – надёжный метод изготовления многоцелевых вертикальных резервуаровСегодня метод рулонирования резервуаров «работает» в самых разных сферах промышленности: химической; пищевой; нефтяной; топливно-энергетической. Этот парк вертикальных рулонированных цилиндрических емкостей имеет характеристики: вместимость – до 5 00 м3; толщина стенки – до 18 мм; толщина днища в центральной части– до 6 мм. Из…

  • Применение резервуаров

    Годовая реализация нефтехимических продуктов обычно производится относительно небольшими объемами. Это служит причиной того, что их емкость для баз хранения и АЗС, как правило, находится в диапазоне 100-5000 м3. Возможно также изготовление резервуаров объемом от 100 до 100000 м3. При расчете таких конструкций учитывается, что они должны выдерживать избыточное давление в пределах 2000 Па.По месту расположения  различают наземные и…

Подбор теплообменника по параметрам

Есть готовый расчет, заполненный опросный лист или спецификация? Прикрепите файл:

Низкий напор горячей воды и другие признаки засоренности

Признаки засорённости

  • низкий напор горячей воды;
  • под кожухом скапливается и сыпется сажа;
  • после включения происходит быстрое отключение горелки;
  • плохой прогрев воды;

    Важно! Прежде чем начинать процесс очистки теплообменника необходимо убедиться, что исправны остальные элементы отопительной системы.

  • постоянное срабатывание тепловой защиты.

Сравнительная таблица кожухотрубного и пластинчатого оборудования

Характеристика Кожухотрубные теплообменники Разборные пластинчатые теплообменники
Коэффициент теплопередачи (условно) 1 3 — 5
Разность (возможная) температур теплоносителя и нагреваемой среды на выходе Не менее 5-10 °С 1 — 2 °С
Изменение площади поверхности теплообмена Невозможно Допустимо в широких пределах, кратно количеству пластин
Внутренний объем (условно) 100 1
Соединение при сборке Сварка, вальцовка Разъемные
Доступность для внутреннего осмотра и чистки Неразборный, труднодоступен, простая замена частей невозможна; возможна только промывка Разборный. Легко доступный осмотр, обслуживание и замена любой части, а так же механической промывки пластин.
Время разборки 90 — 120 мин. 15 мин.
Материал трубок (пластин) Латунь или медь Нержавеющая сталь
Уплотнения Неразборный. Простая замена невозможна Уплотнения бесклеевые легко меняются на новые. Жестко зафиксированы в каналах пластины. Отсутствие протечек после механической чистки и сборки
Обнаружение течи Невозможно обнаружить без разборки Немедленно после возникновения, без разборки
Подверженность коррозии при температуре более 60 °С Да Нет
Чувствительность к вибрации Чувствителен Нечувствителен
Вес в сборе (условно) 10 — 15 1
Теплоизоляция Необходима Не требуется
Ресурс работы до кап. ремонта 5 — 10 лет 15 — 20 лет
Габариты (условно) 5-6 1
Специальный фундамент Требуется Не требуется
Стоимость (условно) в зависимости от назначения и схемы присоединения 0,75 – 1,0 1,0

Ссылки

  • Портал теплообменного оборудования www.teploobmenka.ru

Преимущества

  • возможность монтажа и демонтажа устройства непосредственно на месте, где будет эксплуатироваться пластинчатый теплообменник;
  • установка в тепловых системах без должной водоподготовки;
  • незначительный вес;
  • возможность быстро и легко изменять тепловую мощность путём дополнительной установки пластин;
  • гибкая регулировка температурного режима в системе.

Принцип работы пластинчатого теплообменника - фото 85

Преимущества :

  • повышенная стойкость к гидроударам, что выгодно отличает устройства от аналогов;

  • способность функционировать в условиях, далеких от идеальных, с использованием сильно загрязненных веществ;

  • простота эксплуатации, механическая чистка и техническое обслуживание не представляют трудностей для персонала;

  • хорошая ремонтопригодность.

Последнее качество особенно ценно, если сравнивать кожухотрубчатый аппарат с пластинчатым. Пластинчатые установки имеют в конструкции сложные прокладки и чаще подвержены засорению ввиду небольшого поперечного сечения проточных каналов. После каждой чистки аппарата уплотнения меняют, что выходит довольно дорого. Форма прокладок кожухотрубных теплообменников более простая, это облегчает замену. По количеству их нужно меньше.

Кроме того, пластинчатые варианты не пригодны к применению в зонах с жесткой водой или там, где не исключены механические частицы. Кожухотрубные изделия не настолько требовательны, они могут работать даже с морской водой и агрессивными жидкостями.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...